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a b s t r a c t

The problem of reconstructing a previously unknown control (parameter) of a dynamical system using
the results of approximate observations of the motion of this system is considered. It is proposed to use
static and dynamic methods to solve this problem which, in their implementation, utilize the method
of Tikhonov regularization with a stabilizer containing a variation of the simulating subsidiary control
(parameter).The use of such a non-differentiable stabilizer enables one to obtain more refined results
than the approximation of the required control in Lebesgue spaces. In particular, the piecewise-uniform
convergence of the regularized approximations can be successfully substantiated by this route, which
opens up the possibility of numerically reconstructing the fine structure of the required control.

© 2009 Elsevier Ltd. All rights reserved.

The problem of the regeneration (reconstruction or identification) of previously unknown controls (parameters) operating in a controlled
dynamical system is considered. The control actions in the dynamical system can be unknown in advance and must be determined from
the results of observations of the object, in particular, from the results of approximate measurements of the current phase positions of the
system. The reconstructed controls can then be used to estimate the characteristics of the controlled object, the operational acceptance
of the solutions or more adequate modelling. It is well known that the problem considered is ill-posed and its solution requires the use
of regularization methods.1–3 Reconstruction problems of this kind for dynamical systems have been studied in different formulations in
control theory, the theory of differential games, and estimation and identification theory.4–13

Two methods, a static method and a dynamic method, are proposed for solving the problem. It is proposed to use the Tikhonov variational
method to solve the problem by the static method. The essence of the Tikhonov method is the minimization of a certain suitable discrepancy
functional in the set of permissible controls. From the point of view of control theory, this method can be classified as a static reconstruction
method. In solving the reconstruction problem by this method, the results of approximate measurements of the current phase positions of
the system, accumulated from the observation of the dynamical system during some specified time interval, serve as the initial information
for solving it. Here, the reconstruction is accomplished a posteriori after the elapse of the corresponding time interval for the observation of
the system, using the totality of the information available. A distinctive feature of the static approach to the problem lies in the fact that the
data for calculating the controls are known in advance and the reconstruction algorithm does not take account of a possible change in these
data during the computational process, and the computational process is not, generally speaking, a single process and can be repeated when
necessary. The concepts and methods of preset control theory and the theory of ill-posed problems1–13 are used to solve the problem. The
results of instantaneous approximate measurements of the current phase positions of the system, which are received by the observer of the
dynamics during some specified time interval, serve as the initial information for the solution when the reconstruction problem is solved by
the dynamic method. Here, the measurements and reconstruction are performed dynamically throughout the course of the process using
the instantaneously arriving information. The special feature of the dynamic approach lies in the fact that the data for the calculations
can only be admitted during the course of the process and can depend at the present time on how the reconstruction was carried out in
the past. The development of this approach is associated with the fact that the need to perform a reconstruction synchronously with the
development of a process frequently arises in certain engineering and scientific studies. Similar problems are involved in the mechanics of
controlled flight and in operational information retrieval during the creation of technological and manufacturing processes. The concepts
and the methods of positional control theory and the theory of ill-posed problems1–13 are used to solve the reconstruction problem by
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the dynamic method. In this case, regularization is performed locally in a short time interval. Constructive stable regularizing algorithms
are constructed for solving a problem by one or the other of the methods. Moreover, the dynamic algorithms possess the property of
practicability and are capable of working in real time, processing the incoming information during the course of the motion of the system
and producing a result dynamically as the motion develops.

It is well known that, in the case of ill-posed linear problems, a classical Tikhonov n-th order regularization gives a high quality of
approximation (reconstruction) in the case of a required smooth function. However, it does not allow of a qualitative reconstruction of
non-differentiable functions which can contain kinks, close peaks, discontinuities and other singularities. Controls in dynamical systems
can have singularities of just this kind. Stabilizing functionals, containing the norm of the Sobolev space Wn

p , have a strong stabilizing effect
which inevitably leads to a smoothing out of the required function and to the loss of its fine structure. In particular, stabilizing functionals,
containing the norm of the space Lp, 1 ≤ p < ∞, also lead to a fairly coarse approximation. The need therefore arises to construct stabilizers
which are specially adapted to reconstruct non-smooth functions and functions with singularities. Up to the present time, several classes
of stabilizing functionals, which have favourably proved themselves both for smooth and unsmooth reconstructed functions, have been
proposed in variational regularization methods. In the case of functions of one variable, stabilizers containing a classical or generalized
variation are often used in conjunction with some strictly convex norm such as, for example, the norm of the space Lp, 1 < p < ∞.14–20

Convergence in Lp, pointwise convergence, convergence of variations and, also, uniform convergence on segments of continuity of the
required functions can be successfully achieved by this route. In the case of functions of several variables, stabilizers containing a generalized
variation21 and the norm of the space Lp, 1 ≤ p < ∞ are frequently used.15,16,22–24 Here, convergence in Lp, pointwise convergence and
convergence of the variations of the regularized approximations to the required function are successfully achieved. Stabilizers in the
form of the norm of the Lipschitz space are used to obtain a uniform approximation of a continuous but, in general, non-differentiable
function.16 The use of the norm of the Sobolev space W�

p with fractional derivatives of the order � ∈ (0, 1) can turn out to be advisable both
for reconstructing continuous as well as discontinuous required functions.14,16

It is shown below that, when stabilizers in the form of the sum of a classical variation and the norm of the space L2 are used, it is possible
to obtain pointwise convergence, convergence in L2, convergence of variations and uniform convergence on the continuous segments of the
required control which is reconstructed. In this sense, one may speak of the possibility of the numerical reconstruction of the fine structure
of a required control.

1. Formulation of the problem

We will now describe the interesting aspect of the problem. Consider a controlled dynamical system, the behaviour of which, in a
specified limited time interval T = [t0, ϑ] (−∞ < t0 < ϑ < +∞), is described by the system of ordinary differential equations

(1.1)

where Rn � x = x(t) is the vector of the phase state of the system at an instant t ∈ T, x0 is the initial state of the system, Rm � u = u(t) is the vector
of the control acting on the system at an instant t ∈ T (the control, parameter) and f = f(t, x, u) is a given vector function which reflects the
dynamical properties of the system. The permissible current values of the control action are subject to the given geometrical constraints

(1.2)

which characterize the possibilities of the control or reflect the known estimates for the permissible change of a parameter.
Suppose an observation during a time interval T is performed on a controlled dynamical system and its motion x = x(t), the states of the

system x(t) are approximately measured at the corresponding current instants t ∈ T and, at the same time, the results of these measurements
y(t) satisfy the following condition for the accuracy of the measurements

(1.3)

where ||·||m is the Euclidean norm in Rn and � is a numerical parameter characterizing the accuracy of the measurements, 0 ≤ � ≤ �0.
The reconstruction problem consists of the approximate determination (reconstruction) of that realization u = u(t) of the control action

on the dynamical system which answers (corresponds) to the results of the observations using the results of the approximate measurements
y = y(t) of the observed motion of the system x = x(t). At the same time, the result u� = u�(t) of the reconstruction of the required control
action u = u(t) must be the more accurate, the smaller the errors in the measurements

(1.4)

Unless otherwise stated, all the functions are considered when t ∈ T and integration with respect to t is carried out over the interval T.
The meaning of the concept of approximate reconstruction u� ≈ u will then be varied and refined. Methods and reconstruction algorithms
will be proposed which, besides the mean square approximation (1.4), ensure approximation in a certain stronger sense leading to the
reconstruction of the fine structure of the required control. At the same time, it will be assumed that the a priori geometrical constraints P,
imposed on the set of permissible controls, and the equations of the dynamics of the process (the function f) together with the initial state
x0 are known to the observer striving to solve the reconstruction problem.

We now consider the mathematical formulism of the problem. Suppose P is a convex compact set from Rm and U is the set of all
measurable and square-integrable vector functions which, for almost all t ∈ T, belong to the compactum P

This set represents the set of all permissible controls in the problem considered.
To be specific, suppose the function f then has the form
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The functions f1: T × Rn → Rn and f1: T × Rn → Rn×m are continuous in the set T × Rn and, in this set, they satisfy the condition of sublinear
growth and a local Lipschitz condition with respect to the variable x (see, for example, Refs 5 and 12). It is well known5,12 that, in the
case of these conditions, which the function f satisfies, a unique solution x(·) = x(·; u) = x(t; u) of Cauchy problem (1.1) which is absolutely
continuous in the interval T exists for each element u ∈ U. This solution will sometimes be called the motion of the dynamical system (1.1)
generated by the control u ∈ U.

We now introduce the set of all possible motions of system (1.1) corresponding to all possible controls u ∈ U,

For each motion x(·) ∈ X, we introduce the set of all permissible controls corresponding to the given motion

and the set of all possible measurements of this motion

The problem consists of constructing an algorithm which, using any permissible measurements of the current states of the observed
motion of the system, approximately reconstructs a control which is in accord with the results of the observations of the motion. We identify
the required algorithm with the family of mappings (methods)

The initial problem can now be formulated as follows: it is required to construct an algorithm D = {D�: 0 ≤ � ≤ �0}which, for any observed
motion x(·) ∈ X, possesses the regularizing property

As will be shown below, in fact, D�(y) → û strongly in E, where û = û(x(·)) is a certain element from the set U(x(·)).
Before starting to solve the problem, we well note several algebraic and topological properties of the motions of the system and the sets

which have been introduced into the treatment. The set U is convex, bounded and closed, and it is therefore weakly compact in the space
E. The set X is compact in the space C(T; Rn), and the weak convergence of the controls uk ⇁ u0 in E implies the strong convergence of the
motions x(·; uk) → x(·; u0) in C(T; Rn). For each x(·) ∈ X, the set U(x(·)) is non-empty, convex, bounded, closed and therefore weakly compact
in the space E and has a unique element of minimum E-norm.

In particular, it follows from what has been said above that the mapping

is compact and, therefore, cannot have a continuous inverse mapping even if it is considered as a multivalued mapping. The ill-posed nature
of the reconstruction problem and the need to invoke regularization methods to solve it follows from this.

We shall subsequently also consider the Banach space14

where V[u] is the total variation of the function u: T � t → u(t) ∈ Rm:25–27

The supremum is chosen using all possible finite subdivisions of the segment T.
The space W is entirely continuously imbedded in E14,27 (the imbedding operator is continuous, and it converts every bounded set from

W into a pre-compact set from E). Every closed sphere in W is a closed set in E.14 The pointwise limit of a bounded sequence of functions
from W is also a function from W. The functional V[·] is lower semi-continuous with respect to pointwise convergence (if the sequence of
functions of the bounded variation {vk} converges pointwise to a certain function of the bounded variation v0, then V [v0] ≤ lim inf V [vk]).
The norm ||·||W is lower semi-continuous with respect to pointwise convergence. The functional V[·] is lower semi-continuous with respect
to convergence of bounded sequences from W in E (if {vk} is a bounded sequence from W which converges to a certain element v0 ∈ E in E,
then v0 ∈ W and V [v0] ≤ lim inf V [vk]). The norm ||·||W is lower semi-continuous with respect to convergence of bounded sequences from
W in E.

All the numerical quantities and spaces considered in this paper are assumed to be real, measurability and integrability are understood
in the Lebesgue sense, the definitions of the functional spaces used are taken into account (for example, see Refs 12, 25 and 26), and proofs
of the assertions formulated above are available (see, for example, Refs 14,25–29).
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2. Solution of the reconstruction problem using the static method

We shall construct the required algorithm. For any � ∈ [0, �0], y ∈ H, we define the realization (value) of a method D�(y) according to the
rule

(2.1)

(2.2)

where � is a positive regularization parameter. It will be chosen depending on the magnitude � of the error in the measurements.
Note several properties of the extremal problem (2.2) in advance. This problem is solvable for each fixed � > 0, the set of its solutions

(the set of minimizing elements) U∗
�(y) is non-empty and compact in E, and it is also weakly closed in E and closed in W. Every minimizing

sequence in problem (2.2) converges strongly (weakly) in E to the set of solutions U∗
�(y), that is, every subsequence of a minimizing sequence

which converges strongly (weakly) in E converges strongly (weakly) to a certain element of the set U∗
�(y). Proofs of analogous assertions

are available (see Refs 27–29).
We shall call an element û of the set Q ⊆ U which satisfies the condition

a �-normal element of the set Q and we denote it by û(Q ).

Theorem 1. Suppose U(x(·)) ∩ W /= ∅. Then, a unique �-normal element û = û(U(x(·))) exists in the set U (x(·)). If the regularization parameter
� = �(�) satisfies the consistency conditions

(2.3)

then the algorithm D, consisting of methods (2.1), solves the reconstruction problem, that is, the convergence r�(x(·)) → 0 holds for any observed
motion x(·) ∈ X when � → 0. Moreover, whatever realizations of the measurements y� ∈ Y(x(·), �) occur here, the following convergences hold
for the realizations of the algorithm v� = Dı(y�) when � → 0:1) v� → û strongly in E, 2) v�(t) → û(t) in Rm pointwise in T, 3) V [v�] → V [û], 4)
v�(t) → û(t) in Rm uniformly with respect to t in any continuous segment of the function û.

The main part of the theorem is proved using a well-known scheme.17

3. Solution of the reconstruction problem by the dynamic method

We shall initially describe the method for solving the problem in an informal manner. We shall follow a procedure for solving the
problem which reduces it to a problem of the positional control of a suitable subsidiary control system-model. Conceptually, this procedure
goes back to Refs 6,7.

A certain suitable control system-model

(3.1)

is constructed in advance, the current state of which at an instant t ∈ T is described by a phase vector z = z(t) ∈ Rn; z0 is the given initial state
of the system-model, the vector of the control actions � at the current instant t ∈ T is restricted by the constraint v(t) ∈ P and g = g(t, z, v)
is a given vector function which reflects the dynamical properties of the system-model.

A certain suitable control law is then constructed for the system-model (a positional strategy or a control procedure with a
guide5–8) which will be identified with the function V = V(t, �, y, z, v), that is defined for all possible values of the arguments
t ∈ T, � ∈ [t, �], y ∈ Rn, z ∈ Rn, v ∈ Rm and takes values in the set U[t, �], where U[t, �] is the set of all measurable mappings [t, �] → P.

Suppose some subdivision of the segment T is given by the points ti(t = 0, . . ., 1), t0 < t1 < . . . < tl. According to this partitioning, a strategy
� generates a motion z� = z�(·; t0, z0, ϑ, V) of the system-model in the segment T

(3.2)

the control action vi = vi(t), ti ≤ t ≤ ti+1 is generated (determined or calculated) at an instant ti on the basis of the data y(ti) concerning
the measurement of the state x(ti) of the observed system which has arrived up to this instant, the data z�(ti) concerning the state of the
system-model and the data vi−1(ti) concerning the control action of the model which has been realized in the preceding step, taken at the
instant ti, that is,

The method of obtaining the control action vi−1(ti) when i = 0 is explained below.
It is found that, for a fairly wide range of problems, the system-model and the law controlling it can be chosen so that the realization of

the control strategy
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will be close in a certain sense to the required control of system (1.1) only if the error in the measurements � and the diameter d(�) of the
partitioning � are sufficiently small and they are matched in a certain manner. The magnitude of the diameter d(�) of the partitioning �
is assumed to depend on �.

Note that the variable of the state of the subsidiary system-model and the control action variable of this system can be considered as the
internal variables of the required algorithm D which solves the reconstruction problem by the dynamic method. These internal variables
can be independently calculated using a computer. A copy of the initial system can frequently be taken as the system-model but other
methods of selecting the system-model are possible, and this question is solved separately in each specific case.

It will henceforth be assumed that g(t, z, v) = f (t, z, v). From a practical computational point of view, it is convenient to solve Cauchy
problems (3.1) or (3.2) using a discrete Euler scheme.5–8 The strategy V is constructed from these considerations such that the motion of the
system-model (3.1), appearing from the state z0 at the instant t0 under the action of this strategy, tracks the dynamics of the measurements
y(ti) of the observed states x(ti) of system (1.1) in a particular sense. The idea of constructing such a law for controlling system-model (3.1)
is incorporated in the well known extremal displacement method from positional control theory,5–8 which is locally regularized by one of
the well-known methods of regularization.1–3 The Tikhonov regularization method will be used in this paper.

We will now formally define the required algorithm D and identify it with the family of methods D�
�

:

where � is the set of all finite partitionings � of the segment T. Each method D�
�

constitutes a set of mappings D�
�i

:

where W[ti, ti + 1] is the set of all functions [ti, ti + 1] → Rm of a bounded variation in [ti, ti+1]. We call the function v�
�

: T → Rm, which is
defined by the equalities

the realization of the method D�
�

for a measurement y ∈ Y(x(·), �) and we denote it by the symbol D�
�

(y). The value z = z(ti) of the internal

variable z of the method D�
�

at the instant ti is uniquely formed on the basis of the available information t(ti) concerning the motion of
system (1.1) which has been accumulated up to this instant and the control actions vj(j = 0, . . . , i − 1) of this method which have been
realized. We shall formulate the rule for forming the variable z and the control action v−1(t0) of the method D�

�
below, where the specific

technique for constructing the methods of the algorithm will be discussed.
The initial reconstruction problem can now be formulated as follows: it is required to construct an algorithm

which, for particular matchings between the quantities d(�) and �, possesses the regularizing property r�
�

(x(·)) → 0 when � → 0 for any
observed motion x(·) ∈ X, where

Before starting to construct the specific algorithm that solves this problem, we will assume that a procedure is available to the observer
which enables him to determine the value u0 = u(t0) of the real control u(·) = u(·; x(·)) from the set U(x(·)) that generates the observed
motion x(·) ∈ X. We will denote this approximate value by the symbol u0

h
= u0

h
(x(·)), where h is the accuracy of the approximation obtained

||u0
h

− u0||m ≤ h. The magnitude of the parameter h will be subject to the value of � and the value of the parameter h ∈ [0, h0] will be chosen
as a function of the value, �, of the accuracy of the measurements of the states of the system, h = h(�). This informal condition concerning
the possibility of finding an approximation u0

h
will be formally used in algorithm D for assigning the vector v−1(t0) = u0

h
.

We now introduce some notation
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where V�
t [v] is the total variation of the function [t, �] → Rm in [t, �], when t = � by definition we put Vt

t [v] = 0 and 〈·,·〉 is a scalar product in
Rn.

We will now construct the specific algorithm. For any

we define the value of the mapping D�
�i

at a point (y, z, w) according to the rule D�
�i

(y, z, w) = vi
�
, where vi

�
is an element of the set

U[ti, ti+1; w] ∩ W[ti, ti+1] which satisfies the condition

(3.3)

and � = �(�) and � = �(�) are the positive regularization parameters of the algorithm.
We define the value z(t) of the internal variable z of the algorithm at an instant t ∈ T as follows: if t = t0, then we put z(t0) = y(t0) and, if

t ∈ [ti, ti+1) for any i ∈ {0, . . ., l − 1}, then we put

(3.4)

Note that, when i > 1, there is no need to calculate the values of z(tj), vj − 1(tj) (j = 0, . . . , i) each time and it is sufficient to recall the last
values of z(ti) and vi−1(ti) when solving the problem. We also note that the extremal problem (3.3) is easier than problem (2.2) from a
computational point of view.

We will now describe the step-by-step operation of the algorithm in time. Suppose some motion x(·) ∈ X is observed. Prior to the
commencement of the reconstruction process, the functions � = �(�), � = �(�), h = h(�) and the partititioning � of the segment T with a
diameter d(�) ≤ �(�) are fixed and the error level �, at which the states of the observed motion will be measured, becomes known.

3.1. The step i = 0

At the instant t0, information in the form of the measurement y(t0) of the state x(t0) of the observed motion x(·) ∈ X of the system and
an approximate value u0

h
= u0

h
(x(·)) of the real control which generates this observed motion is received by the observer. Putting

the observer, at the instant t0 and using rule (3.3), finds the part v0
�

= D�
�0(y, z, w) of the realization v�

�
= D�

�
(y) of the method D�

�
which is

taken as an approximation to the required control in the time interval t0 ≤ t ≤ t1. The value v�
�

(t1) of the control which has been found is
stored in order to carry out the next step. Then, using rule (3.4), the state z(t1) of the system-model (an internal variable of the algorithm)
is determined and stored in order to carry out the next step.

3.2. The step i = 1

At the instant t1, information in the form of the measurement y(t1) of the state x(t1) of the observed motion x(·) of the system is received
by the observer. Putting

at the instant t1 and using rule (3.3), the observer finds the part v1
�

= D�
�1(y, z, w) of the realization v�

�
of the method D�

�
which is taken as an

approximation of the required control in the time interval t1 ≤ t ≤ t2. The value v1
�
(t2) of the control which has been found is stored in order

to carry out the next step. Then, using rule (3.4), the state z(t2) of the system-model (an internal variable of the algorithm) is determined
and stored in order to carry out the next step.

The following steps i = 2, . . ., l − 1 are similar to the step i = 1. The total realization of the method v�
�

= D�
�

(y) will therefore be obtained
in a stepwise manner during the course of the process (in the dynamics) up to the final instant tl = ϑ. From the description of the operation
of the algorithm in time, it is clear that it can be performed in real time.

Theorem 2. Suppose

Then, a unique �-normal element û exists in the set U(x(·)) ∩ U[t0, ϑ; u0]. If the regularization parameters � = �(�), � = �(�), h = h(�) and the
estimate �(�) of the diameter d(�) of the partitioning � of the segment T satisfy the conditions

when � → 0, then the algorithm D, consisting of methods (3.3) and (3.4), solves the reconstruction problem, that is, the convergence r�
�

(x(·)) → 0

holds for any observed motion x(·) ∈ X when � → 0. Moreover, in when realizing the methods v�
�

= D�
�

(y) and whatever measurements y ∈ Y(x(·),
�) have taken place here, the following convergences hold when � → 0: v�

�
→ û strongly in E, v�

�
(t) → û(t) in Rm pointwise in T, V [v�

�
] → V [û]

and v�
�

(t) → û(t) in Rm uniformly with respect to t from any continuous segment of the fuction û.
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Proof. We will now prove the first part of the theorem. Suppose

Then, �(u*) < ∞ and all �-normal solutions, if they exist, must be contained in the set

Suppose {uk}⊂ Q* is an arbitrary sequence which minimizes the functional � on the set Q*, that is,

On the basis of Helly’s first and second theorems and, also, Lebesgue’s theorem on passing to the limit under an integral sign, we can
assume, without loss of generality and passing to a subsequence when necessary, that an element u* ∈ Q* exist such that uk → u* in E and
uk(t) → u*(t) in Rm pointwise in T. Taking account of the lower semicontinuity of the functional � with respect to pointwise convergence
in T, we obtain

Hence, �(u*) = �* and the non-emptiness of the set of �-normal elements in the set Q* is proved. Next, since the sets U(x(·)), U[t0, ϑ; u0],
W are convex, the intersection Q of these sets is also convex. The strict convexity of the functional � in Q follows from the strict convexity
of the norm in Hilbert space E and the convexity of the total variation in W. The uniqueness of the element minimizing the functional � in
Q, that is, the uniqueness of the �-normal element, follows from the strict convexity of � in Q. The first part of the theorem is proved.

We shall henceforth assume that the set Q is non-empty for any x(·) ∈ X and, consequently, a unique �-normal element û = û(x(·)) will
always exist in the set Q.

We will now prove the following part of the theorem. We fix an arbitrary motion x(·) ∈ X and some function � = �(�), � = �(�), h = h(�),
� = �(�) which satisfy the correspondences from the condition of the theorem. To prove the remaining part of the theorem, it is sufficient
to show that, whatever the numerical sequence {�k}⊂ [0, �0], �k → 0, the sequence of elements {yk}, yk ∈ Y(x(·), �k)k ∈ N and the sequence
of partitionings {�k}⊂ �, d(�k) ≤ �(�k), k ∈ N, the following convergences hold: vk = v�k

�k
= D�k

�k
(yk) → û = û(x(·)) in E, vk(t) → û(t) in Rm

pointwise in T, and V [vk] → V [û].
We now fix some sequences {	k}, {yk}, {�k} which satisfy the above mentioned conditions and show that the above mentioned

convergences hold. Taking account of the rule for the formation of a realization of the algorithm vk = D�k
�k

(yk), the following estimate can

be obtained for the functional �k = �k(t; x, zk, �, vk, û)

(3.5)

where C0 is a certain positive constant, which is independent of k ∈ N and is solely determined by data on the system and the problem
which is known a priori, and zk is the motion of the system-model, generated by the realization of the algorithm vk (the construction of this
motion is described in (3.4)).

The inequalities

(3.6)

(3.7)

follow from the estimate (3.5), where

and C1 is a certain positive constant which is analogous to the constant C0. Since 
∗
k

→ 0, we obtain the convergence

(3.8)

from inequality (3.6).
According to the condition of the theorem 
k�(�k)−1 → 0. The sequence 
k�(�k)−1 is therefore bounded and a number C3 ≥ 0 exists such

that 
k�(�k)−1 ≤ C3 for any k ∈ N. From inequality (3.7) we then obtain

(3.9)

The boundedness of the sequence {vk} in E and W follows from inequality (3.9).
Then, on the basis of Helly’s first and second theorems and Lebesgue’s theorem concerning passing to the limit under an integral sign,

the compactness of the imbedding of W in E, the weak compactness of the set U in E and the lower semicontinuity of the total variation
with respect to pointwise convergence, we can assume, without loss of generality, that the convergences

(3.10)

(3.11)
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(3.12)

hold for a certain element v∗ ∈ U ∩ W .
Taking account of equality (3.4), the functions zk can be represented in the form

(3.13)

where ȳk is a piecewise-constant completion of the mesh function yk(t1)(i = 0, . . ., l) in the segment T, that is,

It follows from the estimate

that

(3.14)

From the form of the function

the convergence (3.14) and the weak convergence vk ⇁ v∗ in E, which follows from the convergence (3.10) or (3.11), we obtain the
convergence

(3.15)

We now take the limit in equality (3.13) on the basis of relations (3.8) and (3.15). After taking to the limit, we obtain the equality

This equality means that

From the convergence (3.11), we have vk(t0) = u0
h(�k) → u0 in Rm and, therefore,

Since û is a �-normal element in the set U(x(·)) ∩ U[t0, ϑ; u0], �(û) ≤ �(v∗). Then, taking account of relations (3.7), (3.10) and (3.12), we
have

From the resulting chain of inequalities we obtain

By virtue of the uniqueness of the �-normal element in the set U(x(·)) ∩ U[t0, ϑ; u0], we obtain the matching of the elements v∗ = û
as elements of the space W (and this means also the pointwise matching). Moreover, the convergence V [uk] → V [û] follows from the
convergence (3.10) and the convergence �(vk) → �(û). Hence, the expected convergences are obtained: vk → û in E, vk(t) → û(t) in Rm

pointwise in T and V [uk] → V [û]. Since the sequences {�k}, {yk}, {�k} were chosen arbitrarily, the convergences

(3.16)

hold when � → 0.
When there is a strong convergence v�

�
→ û in E, it is easily shown by contradiction that r�

�
(x(·)) → 0 when � → 0.

It follows from the convergence (3.16) and well-known results14,19,20 that v�
�

(t) → û(t) in Rm uniformly with respect to t from any segment
in which the function û is continuous. This completes the proof.

4. Numerical modelling

We will now present the results of numerical modelling using the dynamic reconstruction of a control in the system

(4.1)
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Fig. 1.

The segment [�1, �2] ⊂ R represents the set of geometric constraints on the control P and the approximate measurement of the states
of the system was modeled by the relation

Calculations were carried out for the following parameters of the problem

The model controls reconstructed were the following three functions:

1) u = u(1)(t) = 1 + sin2�t (a smooth control);

2) u = u(2)(t) = 1 − |2x − 1| (a continuously piecewise smooth control);

3) u = u(3)(t) =
{

0.5, if t ∈ [0, 1/4] are t ∈ [3/4, 1],
1.5, if t ∈ [1/4, 3/4] (discontinuous control)

The extremal controls in the intervals of the partitioning were found by the method of projection of a subgradient27–29 with a number
of iterations I.

The reconstructed control is shown by the solid curve in the Fig. 1. The control I was reconstructed for the following parameter
values

The reconstruction when � = 0.46 is shown by the dashed line and the reconstruction when � = 0.02 by the dot-dash line. The reconstruction
of control 2 was carried out for
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The reconstruction when � = 0.08 is shown by the dashed line and the reconstruction when � = 0.005 by the dot-dash line. The reconstruction
of control 3 was carried out for

The dashed line was obtained when � = 0.46 and the dot-dash line when � = 0.01.
The modelling shows that the fine structure of a control can be reconstructed to a considerable extent.
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